Optimum Quadrature Formulas In s Dimensions
نویسندگان
چکیده
1. W. J. Eckert, "The computation of special perturbations by the punched card method," Astronomical Jn., v. 44, 1935, p. 177-182. 2. W. J. Eckert, Dirk Brouwer, & G. M. Clémence, "Coordinates of the five outer planets (1653-2060)," Astronomical papers prepared for the use of the American Ephemeris and Nautical Almanac, v. 12, U. S. Gov. Printing Office, Washington, D. C, 1951. 3. Dirk Brouwer, "On the accumulation of errors in numerical integration," Astronomical Jn., v. 46, 1937, p. 149-153. 4. L. Collatz, Numerische Behandlung von Differentialgleichungen, Springer-Verlag, Berlin, 1951, p. 76-77. 5. C. Störmer, "Elektronenbahnen im Felde eines Elementarmagneten und ihre Anwendung auf Bruches Modellversuche und auf Eschenhagens Elementarwellen des Erdmagnetismus," Zeit, für Astrophysik, v. 1, 1930, p. 237-274. 6. H. A. Rademacher, "On the accumulation of errors in processes of integration on highspeed calculating machines," Proceedings of a symposium on large scale digital calculating machinery. The Computation Laboratory of Harvard University Annals, v. 16, 1948, p. 176-185.
منابع مشابه
Numerical Cubature from Archimedes' Hat-box Theorem
Archimedes’ hat-box theorem states that uniform measure on a sphere projects to uniform measure on an interval. This fact can be used to derive Simpson’s rule. We present various constructions of, and lower bounds for, numerical cubature formulas using moment maps as a generalization of Archimedes’ theorem. We realize some well-known cubature formulas on simplices as projections of spherical de...
متن کاملOptimum Quadrature Formulas In s Dimensions
1. W. J. Eckert, "The computation of special perturbations by the punched card method," Astronomical Jn., v. 44, 1935, p. 177-182. 2. W. J. Eckert, Dirk Brouwer, & G. M. Clémence, "Coordinates of the five outer planets (1653-2060)," Astronomical papers prepared for the use of the American Ephemeris and Nautical Almanac, v. 12, U. S. Gov. Printing Office, Washington, D. C, 1951. 3. Dirk Brouwer,...
متن کاملKernel based quadrature on spheres and other homogeneous spaces
Quadrature formulas for spheres, the rotation group, and other compact, homogeneous manifolds are important in a number of applications and have been the subject of recent research. The main purpose of this paper is to study coordinate independent quadrature (or cubature) formulas associated with certain classes of positive definite and conditionally positive definite kernels that are invariant...
متن کاملOn Chebyshev-Type Quadratures
According to a result of S. N. Bernstein, «-point Chebyshev quadrature formulas, with all nodes real, do not exist when n = 8 or n ä 10. Modifications of such quadrature formulas have recently been suggested by R. E. Barnhill, J. E. Dennis, Jr. and G. M. Nielson, and by D. Kahaner. We establish here certain empirical observations made by these authors, notably the presence of multiple nodes. We...
متن کاملConvergence and computation of simultaneous rational quadrature formulas
We discuss the theoretical convergence and numerical evaluation of simultaneous interpolation quadrature formulas which are exact for rational functions. Basically, the problem consists in integrating a single function with respect to different measures by using a common set of quadrature nodes. Given a multi-index n, the nodes of the integration rule are the zeros of the multiorthogonal Hermit...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2010